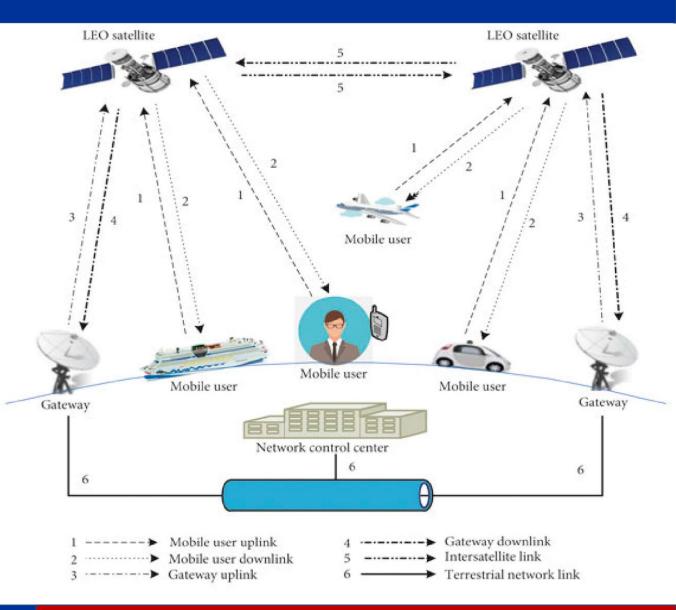
Regulatory Framework for Satellite Internet, March 25th, 2025

Regulation of Broadband Satellite Internet Services Navigating Opportunities, Challenges, and Global Standards

Hichem Besbes Professor at Sup'Com, University of Carthage Director of the Research Lab. COSIM

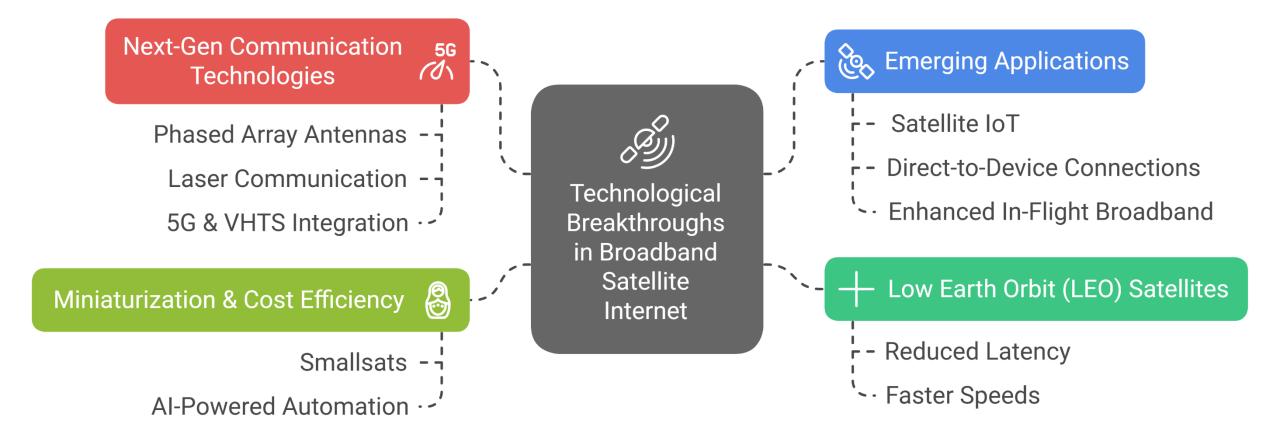
Why Satellite Broadband ?

Introduction


- Global Connectivity Gap: 3.7 billion lack internet access; LEO satellites bridge remote regions.
- Arab Region Needs: Deserts, mountains, and rural areas rely on satellite solutions.
- Key Innovations:
 - ⇒ LEO constellations (Starlink, OneWeb, ...) with 20–40 ms latency.
 - Integration with 5G/6G for hybrid networks.

How Satellite Broadband Works

- Key Components of a Broadband Satellite System:
- •Constellation of Satellites.
- Network of Ground Stations (Gateways)User Terminals


How It Works ?

- 1. User terminals send data to a satellite (uplink).
- 2. The satellite relays the data to a ground station (downlink).
- 3. The ground station connects to the internet and transmits data back via the satellite.
- 4. The signal reaches the user, completing the communication cycle.

Technological Breakthroughs in Broadband Satellite Internet

Technological Advancements in Broadband Satellite Internet

Benefits of Satellite Broadband

1. Accessibility:

- Reaches remote/rural areas (e.g., Sahara, Yemeni highlands).
- Bridges the urban-rural digital divide.
- 2. Resilience:
 - Rapid post-disaster recovery (e.g., floods, conflicts).
- 3. Scalability:
 - Supports IoT, smart agriculture, and maritime connectivity.
- 4. Cost-Effectiveness:
 - Cheaper than deploying fiber in rugged terrains.

Limitations of Satellite Broadband

1. Technical Challenges:

- Latency (still higher than fiber).
- Weather vulnerability (storms disrupt signals).
- 2. User Constraints:
 - High upfront costs (dish/terminal cost, monthly plan).
- 3. Operational Issues:
 - ⇒ VPN incompatibility.
 - Limited upload speeds.

SWOT Analysis

Strengths	Weaknesses
Global coverage	Latency vs. fiber
Rapid deployment	Weather-dependent reliability
Disaster resilience	Data caps & throttling

Opportunities	Threats
IoT/digital transformation	Regulatory fragmentation
Bridging the digital divide	Spectrum disputes
LEO constellation growth	Orbital debris & space congestion

Regulatory Challenges

1.Licensing Complexity:

Varying national requirements (e.g., SpaceX's "landing rights" compliance).

2.Spectrum Management:

Interference risks with terrestrial networks (e.g., C-band).

3.Orbital Debris:

Mitigation policies

4.Data Sovereignty:

Localization mandates

5.Global Harmonization:

Lack of unified standards for LEO operations.

Satellite Communication Regulatory Challenges

Navigating Licensing Complexity: A Regulatory Perspective

Licensing Complexity: The Regulatory Challenge

Balancing Innovation and Control:

 Governments and regulators face the fundamental challenge of crafting licensing regimes that foster innovation and the growth of satellite broadband services while maintaining necessary control and oversight.

Navigating Competing Interests:

- This involves balancing the desire for widespread connectivity with concerns related to:
 - > National security.
 - > Fair competition.
 - Consumer protection.
 - Data privacy.
 - > Sovereignty.

Avoiding Regulatory Overreach:

• Regulators must be mindful of not imposing overly burdensome requirements that stifle investment and innovation in this rapidly evolving sector.

•Key Takeaway:

The regulatory challenge lies in creating an enabling environment for satellite broadband while safeguarding public interests and ensuring responsible development.

Licensing Complexity - Spectrum Management Imperatives

Strategic Resource:

Radio frequency spectrum is a finite and valuable resource that governments must manage strategically.

Preventing Interference:

A primary regulatory responsibility is to prevent harmful interference between satellite services, as well as between satellite and terrestrial networks.

Optimizing Spectrum Use:

Regulators must determine the most efficient methods for allocating spectrum (e.g., auctions, assignments) to:

- Maximize its economic and social value.
- Encourage efficient use by satellite operators.

International Obligations:

Governments must adhere to international agreements and regulations (e.g., ITU) to coordinate spectrum use and avoid cross-border interference.

Licensing Complexity - Shaping Market Dynamics

Promoting Fair Competition:

Regulators use licensing to promote a competitive market, prevent monopolies, and encourage new entrants.

Ensuring Universal Service:

Licensing conditions can be used to incentivize or require satellite operators to provide services in underserved areas, bridging the digital divide.

Protecting Consumers:

Licensing frameworks should include provisions to protect consumers by:

- Ensuring quality of service.
- Promoting affordable pricing.
- Addressing consumer complaints.

Fostering Investment:

Clear, predictable, and stable licensing regimes are essential to attract investment in satellite infrastructure and services.

Licensing Complexity - Towards Effective Governance

Transparency and Predictability:

Governments should strive for transparent and predictable licensing processes to reduce uncertainty and promote fair competition.

Flexibility and Adaptability:

Regulatory frameworks must be flexible enough to adapt to rapid technological change and evolving market conditions.

Regional and International Cooperation:

Greater regional and international cooperation is needed to:

- Harmonize licensing procedures.
- Address cross-border issues.
- Promote global interoperability.

Balancing National Priorities:

Governments must balance the promotion of satellite broadband with other national priorities, such as:

- Protecting national security and sovereignty.
- Ensuring data privacy and security.

Case Study **Regulatory Frameworks** for Satellite Internet Services in Australia

Overview of Satellite Internet Regulation in Australia

Regulatory Bodies:

- Australian Communications and Media Authority (ACMA): Oversees licensing, spectrum management, and interference mitigation.
- Australian Space Agency: Regulates satellite launches under the Space (Launches and Returns) Act 2018.
- Australian Competition and Consumer Commission (ACCC): Ensures fair competition in the telecommunications market.

Key Legislation:

- Telecommunications Act 1997: Governs telecommunications services and licensing.
- Radiocommunications Act 1992: Manages spectrum allocation and usage.
- Australian Communications and Media Authority Act 2005: Establishes ACMA's authority.
- Space (Launches and Returns) Act 2018: Regulates satellite launches from Australia.

Licensing Requirements

Carrier License: Required for entities operating satellite systems or infrastructure.

Radiocommunications License: Necessary for using radiofrequency spectrum.

Satellite Landing Rights: Needed for foreign satellite operators providing services in Australia.

Launch Permit: Issued by the Australian Space Agency for satellites launched from Australian territory.

Recent Developments

- ACMA's launched a public consultation (Nov. 2023– Feb. 2024) on regulatory issues of satellite direct-tomobile services
- The outcome of the public consultation highlights the need for:
 - > Clear agreements between satellite operators and spectrum license holders,
 - > Enhanced frameworks to address interference concerns in non-Australia-wide licenses
- On September 2024, ACMA published a "Regulatory guide: Operation of an IMT satellite direct-tomobile service"

Towards Harmonized Regulation

- Global & Regional Priorities:
 - Spectrum Coordination: ITU-led allocation.
 - > Mutual Licensing Recognition: Streamline cross-border operations.
 - > AICTO Task Force: Develop unified Arab framework.
- Benefits:
 - Foster innovation.
 - > Bridge the digital divide.

Conclusion & Call to Action

Arab Region Priorities:

- 1. Establish **unified regulations** for spectrum, licensing, and security.
- 2. Launch AICTO-led coalitions for global partnerships.
- 3. Invest in satellite R&D and education.

"By harmonizing regulations and fostering collaboration, satellite internet can drive inclusive growth, safeguard sovereignty, and connect every corner of the Arab world."

Introduction of the Next Presentations

Navigating the Regulatory Landscape

The following presentations will address the core challenges and opportunities in regulating broadband satellite internet services. Key themes include:

- Technological Advancements: Examining current trends and future technological prospects in satellite internet service networks.
- Legal and Regulatory Frameworks: Analyzing national and international legislation, terminal licensing, and governance policies.
- Provider Perspectives: Understanding the opportunities and challenges from the viewpoint of satellite service providers.
- Sovereignty and Security: Addressing the critical issues of sovereignty, security, data protection, and cybersecurity.

THANK YOU FOR YOUR ATTENTION

hichem.besbes@supcom.tn